Share icon Three circles with dashes Person icon Man with pen You Tube Logo Just "You tube" text Facebook logo Small letter f Search icon Magnifier Twitter logo Simplified small bird Email icon Envelope
Skip to main

Real Friendship Leads to the Discovery of a New Imaginary Particle

A particle that carrys energy against the current challenges conventional physics

Prof Dimitri Feldman of Brown University in Rhode Island works with the Weizmann Institute of Science’s Prof. Moty Heiblum. Here he explains some of their findings:


Feldman, Heiblum and postdoctoral fellow Dr. Mitali Banerjee, together with Weizmann Institute scientists Profs. Adi Stern and Yuval Oreg, recently  proved that the heat – in other words, the thermal energy – that various imaginary particles (quasi-particles) carry is limited by the same universal value as that carried by real, everyday particles, such as electrons or photons.

The new findings build on a series of previous discoveries by Heiblum and his colleagues. These findings provided experimental proofs of, for example, a theoretical prediction (which would later garner its formulators a Nobel Prize) of the existence of “imaginary” or “quasi”- particles, each of which carries a charge that is a fraction of that of a normal electron. Special imaginary particles appear in so-called quantum Hall systems; and the first ones that Heiblum and his colleagues identified carry charges of a third, a fifth or a seventh of the electron charge. These imaginary particles acted as real electrons, just with different charges. In continuing research, the researchers identified a different type of imaginary particle, this one with a quarter of the normal charge – that is, with an even, rather than an odd, denominator. Further experiments led them to the discovery of yet another type of imaginary particle that had been predicted by theory – particles with no charge at all (in other words, neutral particles) that move in the opposite direction to that of the electric current.

One of the most outstanding properties of the quantum Hall effect – and thus of the fractional quantum Hall effect – is that the electrical conductance, which can be measured accurately, is found to be quantized – namely it has only exact amounts (based on the electric charge and the Planck constant). These amounts are measured with an accuracy that deviates by less than one billionth. But will this property – the existence of such well-defined amounts of conductivity – also be a property of the heat conductance in the system?

In another theory, proposed around 20 years ago, freely-moving quasi-particles in systems in which they do not meet any resistance – electrons, photons, phonons, etc. – carry energy in fixed “packets” or “quanta.” The group wanted to test the theory and check whether the energy of imaginary particles of all the types they had discovered carry energy in this way – independently of their fractional or neutral charges.

The team, including staff scientists Drs. Vladimir Umansky and Diana Mahalu, and research student Amir Rosenblatt, showed that the energy carried by the quasi-particles is, indeed, measured in a fixed quantity: the quantum of thermal conductance. This quantum is universal – depending only on Boltzmann (kB) and Planck (h) constants and the numerical value of pi (p).The team managed to create a situation in which some of the opposite-propagation neutral particles carried more energy packets than those of the electrons, and thus the net energy in the system was carried in the opposite direction to that of the current flow. This provable quantum phenomenon conflicts with the general understanding of classical physics.

This new understanding of how energy, or heat, is carried within a quantum system and how it can be measured adds knowledge that had been unobtainable until now. Now that it is possible, says Heiblum, the way will be paved for more experiments of heat transport that may reveal more on the nature of quantum phenomena.

A slightly different version of this article appeared in the Weizmann Wonder Wonder under the title Neutral Particles Pack Heat 



Israel BDS – building dialogue through science – aims to promote the kind of international collaboration that can lead to true understanding between people. Israel BDS stands for the free and open exchange of ideas among scientists everywhere. By reporting on the benefits of Israeli-international scientific research and the web of connections that these scientists create around the world, Israel BDS takes a vibrant approach to highlighting the global necessity of continued international scientific collaboration.