Share icon Three circles with dashes Person icon Man with pen You Tube Logo Just "You tube" text Facebook logo Small letter f Search icon Magnifier Twitter logo Simplified small bird Email icon Envelope
Skip to main
Petri dishes with microbial cultures

Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment

We present the results for CAPRI Round 30, the first joint CASP‐CAPRI experiment, which brought together experts from the protein structure prediction and protein–protein docking communities

Petri dishes with microbial cultures

Petri dishes with microbial cultures

Authors:
Lensink, MF; Velankar, S; Kryshtafovych, A; Huang, SY; Schneidman-Duhovny, D; Sali, A; Segura, J; Fernandez-Fuentes, N; Viswanath, S; Elber, R; Grudinin, S; Popov, P; Neveu, E; Lee, HS; Baek, MY; Park, SW; Heo, L; Lee, GR; Seok, C; Qin, SB; Zhou, HX; Ritchie, DW; Maigret, B; Devignes, MD; Ghoorah, A; Torchala, M; Chaleil, RAG; Bates, PA; Ben-Zeev, E; Eisenstein, M; Negi, SS; Weng, ZP; Vreven, T; Pierce, BG; Borrman, TM; Yu, JC; Ochsenbein, F; Guerois, R; Vangone, A; Rodrigues, JPGLM; van Zundert, G; Nellen, M; Xue, L; Karaca, E; Melquiond, ASJ; Visscher, K; Kastritis, PL; Bonvin, AMJJ; Xu, XJ; Qiu, LM; Yan, CF; Li, JL; Ma, ZW; Cheng, JL; Zou, XQ; Shen, Y; Peterson, LX; Kim, HR; Roy, A; Han, XS; Esquivel-Rodriguez, J; Kihara, D; Yu, XF; Bruce, NJ; Fuller, JC; Wade, RC; Anishchenko, I; Kundrotas, PJ; Vakser, IA; Imai, K; Yamada, K; Oda, T; Nakamura, T; Tomii, K; Pallara, C; Romero-Durana, M; Jimenez-Garcia, B; Moal, IH; Fernandez-Recio, J; Joung, JY; Kim, JY; Joo, K; Lee, J; Kozakov, D; Vajda, S; Mottarella, S; Hall, DR; Beglov, D; Mamonov, A; Xia, B; Bohnuud, T; Del Capiro, CA; Ichiishi, E; Marze, N; Kuroda, D; Burman, SSR; Gray, JJ; Chermak, E; Cavallo, L; Oliva, R; Tovchigrechko, A; Wodak, SJ

Abstract:
We present the results for CAPRI Round 30, the first joint CASP‐CAPRI experiment, which brought together experts from the protein structure prediction and protein–protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact‐sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology‐built subunit models and the smaller pair‐wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323–348. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

Full Article

____________________________________________________________________________________________________________________________

Israel BDS – building dialogue through science – aims to promote the kind of international collaboration that can lead to true understanding between people. Israel BDS stands for the free and open exchange of ideas among scientists everywhere. By reporting on the benefits of Israeli-international scientific research and the web of connections that these scientists create around the world, Israel BDS takes a vibrant approach to highlighting the global necessity of continued international scientific collaboration.

___________________________________________________________________________________________________________________________