Share icon Three circles with dashes Person icon Man with pen You Tube Logo Just "You tube" text Facebook logo Small letter f Search icon Magnifier Twitter logo Simplified small bird Email icon Envelope
Skip to main
illustration of Gravitational Waves

Observed quantization of anyonic heat flow

The quantum of thermal conductance of ballistic (collisionless) one-dimensional channels is a unique fundamental constant

illustration of Gravitational Waves

illustration of Gravitational Waves.

Authors:
Banerjee, M; Heiblum, M; Rosenblatt, A; Oreg, Y; Feldman, DE; Stern, A; Umansky, V

Abstract:
The quantum of thermal conductance of ballistic (collisionless) one-dimensional channels is a unique fundamental constant1. Although the quantization of the electrical conductance of one-dimensional ballistic conductors has long been experimentally established2, demonstrating the quantization of thermal conductance has been challenging as it necessitated an accurate measurement of very small temperature increase. It has been accomplished for weakly interacting systems of phonons3,4, photons5 and electronic Fermi liquids6,7,8; however, it should theoretically also hold in strongly interacting systems, such as those in which the fractional quantum Hall effect is observed. This effect describes the fractionalization of electrons into anyons and chargeless quasiparticles, which in some cases can be Majorana fermions2. Because the bulk is incompressible in the fractional quantum Hall regime, it is not expected to contribute substantially to the thermal conductance, which is instead determined by chiral, one-dimensional edge modes. The thermal conductance thus reflects the topological properties of the fractional quantum Hall electronic system, to which measurements of the electrical conductance give no access9,10,11,12. Here we report measurements of thermal conductance in particle-like (Laughlin–Jain series) states and the more complex (and less studied) hole-like states in a high-mobility two-dimensional electron gas in GaAs–AlGaAs heterostructures. Hole-like states, which have fractional Landau-level fillings of 1/2 to 1, support downstream charged modes as well as upstream neutral modes13, and are expected to have a thermal conductance that is determined by the net chirality of all of their downstream and upstream edge modes. Our results establish the universality of the quantization of thermal conductance for fractionally charged and neutral modes. Measurements of anyonic heat flow provide access to information that is not easily accessible from measurements of conductance.

Full Article

____________________________________________________________________________________________________________________________

Israel BDS – building dialogue through science – aims to promote the kind of international collaboration that can lead to true understanding between people. Israel BDS stands for the free and open exchange of ideas among scientists everywhere. By reporting on the benefits of Israeli-international scientific research and the web of connections that these scientists create around the world, Israel BDS takes a vibrant approach to highlighting the global necessity of continued international scientific collaboration.

___________________________________________________________________________________________________________________________