Share icon Three circles with dashes Person icon Man with pen You Tube Logo Just "You tube" text Facebook logo Small letter f Search icon Magnifier Twitter logo Simplified small bird Email icon Envelope
Skip to main
bacteria background render

Local fitness landscape of the green fluorescent protein

Fitness landscapes depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence or in different sequences

bacteria background render

3d render illustration of colorful bacteria

Authors:
Sarkisyan, KS; Bolotin, DA; Meer, MV; Usmanova, DR; Mishin, AS; Sharonov, GV; Ivankov, DN; Bozhanova, NG; Baranov, MS; Soylemez, O; Bogatyreva, NS; Vlasov, PK; Egorov, ES; Logacheva, MD; Kondrashov, AS; Chudakov, DM; Putintseva, EV; Mamedov, IZ; Tawfik, DS; Lukyanov, KA; Kondrashov, FA

Abstract:
Fitness landscapes1,2 depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology2,3,4,5,6,7, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness2,4, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence2,5,8,9,10,11,12,13,14,15 or in different sequences2,3,5,16,17,18. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here we visualize an extensive region of the local fitness landscape of the green fluorescent protein from Aequorea victoria (avGFP) by measuring the native function (fluorescence) of tens of thousands of derivative genotypes of avGFP. We show that the fitness landscape of avGFP is narrow, with 3/4 of the derivatives with a single mutation showing reduced fluorescence and half of the derivatives with four mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations and mostly occurred through the cumulative effect of slightly deleterious mutations causing a threshold-like decrease in protein stability and a concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for several fields including molecular evolution, population genetics and protein design.

Full Article

____________________________________________________________________________________________________________________________

Israel BDS – building dialogue through science – aims to promote the kind of international collaboration that can lead to true understanding between people. Israel BDS stands for the free and open exchange of ideas among scientists everywhere. By reporting on the benefits of Israeli-international scientific research and the web of connections that these scientists create around the world, Israel BDS takes a vibrant approach to highlighting the global necessity of continued international scientific collaboration.

___________________________________________________________________________________________________________________________