Share icon Three circles with dashes Person icon Man with pen You Tube Logo Just "You tube" text Facebook logo Small letter f Search icon Magnifier Twitter logo Simplified small bird Email icon Envelope
Skip to main
Adi Rosenzweig : :Israel bds-Dialogue Through Science

Israeli and British Researchers Team Up to Design Malaria Vaccine Proteins

Computer-design for proteins may help produce vaccines that are stable for long periods at room temperature

Adi Rosenzweig : :Israel bds-Dialogue Through Science

Adi Rosenzweig

Despite decades of malaria research, the disease still afflicts hundreds of millions and kills around half a million people each year – most of them children in tropical regions. Part of the problem is that the malaria parasite is a shape-shifter, making it hard to target. But another part of the problem is that even the parasite’s proteins that could be used as vaccines are unstable at tropical temperatures and require complicated, expensive cellular systems to produce them in large quantities. Unfortunately, the vaccines are most needed in areas where refrigeration is lacking and funds to buy vaccines are scarce. A new approach developed at the Weizmann Institute of Science, recently reported in Proceedings of the National Academy of Science (PNAS), could, in the future, lead to an inexpensive malaria vaccine that can be stored at room temperature.

The RH5 protein is one of the malaria parasite’s proteins that have been tested for use as a vaccine. This protein is used by the parasite to anchor itself to the red blood cells it infects. Using the protein as a vaccine alerts the immune system to the threat without causing disease, thus enabling it to mount a rapid response when the disease strikes, and to disrupt the parasite’s cycle of infection. Research student Adi Goldenzweig and Dr. Sarel Fleishman of the Institute’s Biomolecular Sciences Department decided to use the computer-based protein design tools they have been developing in Fleishman’s lab to improve the usefulness of this protein.

Based on software they have been creating for stabilizing protein structures, Goldenzweig developed a new program for “programming” proteins used in vaccines against infectious diseases. Such proteins, because they are under constant attack by the immune system, tend to mutate from generation to generation. So the program she developed uses all the known information on different configurations of the protein sequence in different versions of the parasite. “The parasite deceives the immune system by mutating its surface proteins. Paradoxically, the better the parasite is at evading the immune system, the more clues it leaves for us to use in designing a successful artificial protein,” she says.

Goldenzweig developed a new program for “programming” proteins used in vaccines against infectious diseases

The researchers sent the programmed artificial protein to a group in Oxford that specializes in developing a malaria vaccine. This group, led by Prof. Matthew Higgins and Simon Draper, soon had good news: The results showed that, in contrast with the natural ones, the programmed protein can be produced in simple, inexpensive cell cultures, and in large quantities. This could significantly lower production costs. In addition, it is stable at temperatures of up to 50o C, so it won’t need refrigeration. Best of all, in animal trials, the proteins provoked a protective immune response. “The method Adi developed is really general,” says Fleishman. “It has succeeded where others have failed, and because it is so easy to use, it might be applied to emerging infectious diseases like Zika or Ebola, when quick action can stop an epidemic from developing.”

Fleishman and his group are currently using their method to test a different strategy for treating malaria, based on targeting the RH5 protein itself and blocking its ability to mediate the contact between the parasite and human red blood cells.

This piece originally appeared on the Weizmann Wonder Wander under the title: Programmed Proteins Might Help Prevent Malaria

 

____________________________________________________________________________________________________________________________

Israel BDS – building dialogue through science – aims to promote the kind of international collaboration that can lead to true understanding between people. Israel BDS stands for the free and open exchange of ideas among scientists everywhere. By reporting on the benefits of Israeli-international scientific research and the web of connections that these scientists create around the world, Israel BDS takes a vibrant approach to highlighting the global necessity of continued international scientific collaboration.

___________________________________________________________________________________________________________________________